Mark scheme – Atomic Structure and Isotopes

Question		on	Answer/Indicative content	Marks	Guidance
1		i	(Weighted) mean/average mass of an atom √ compared with 1/12th mass of carbon-12 OR compared with mass of carbon-12 which is 12 √	2(AO1.1x2)	DO NOT ALLOW mean mass of an element <i>i.e. 'atom' essential</i> Both marks available based on mole: ALLOW mass of 1 mole of atoms \checkmark compared to 1/12th 1 mole/12 g of carbon- 12 \checkmark ALLOW mass of one mole of atoms \checkmark 1/12th mass of one mole/12 g of carbon-12 \checkmark Examiner's Comments Most candidates were given at least one mark but lost the second mark due to omitting the word "atom", or "mean" or "one- twelfth"
		ii	Use of isotope data Use of 87 × 6.9 AND 88 × 82.9 AND 10.2 anywhere \checkmark Calculation of isotopic mass $\frac{(100 \times 87.73) - (87 \times 6.9) - (88 \times 82.9)}{10.2} = 86 \text{ OR } 86.03 \checkmark$	2(AO1.2x2)	ALLOW 877.5 = 10.2A ALLOW 87.73 = $\frac{(A \times 10.2) + 600.3 + 7295.2}{100}$ ALLOW $\frac{8773 - 600.3 - 7295.2}{10.2} = 86.03$ ALLOW $\frac{87.73 - 78.955}{0.102}$ or $\frac{8.775}{0.102} = 86$ OR 86.03 DO NOT ALLOW Sr-86 with no working/justification ALLOW any unambiguous representation Examiner's Comments Algebra was used very well here and allowed most candidates to obtain at least one mark, with the majority obtaining 2 marks
			Total	4	

										IGNORE heavier/lighter
										DO NOT ALLOW different relative atomic masses BUT ALLOW different relative isotopic masses
										DO NOT ALLOW different chemical properties OR different properties
										IGNORE different abundancies
										Examiner's Comments
2	а	 TWO correct responses from √ Different numbers of neutrons Different (atomic) masses/mass numbers Different physical properties Physical required 				umbers	1 (AO1.1)	Candidates needed to state two differences for 1 mark. Most candidates selected 'different numbers of neutrons' but this was often followed up by different 'relative atomic mass', the weighted mean of different isotopes, rather than 'different mass' for a single isotope. This suggested that many candidates may not have understood the meaning of 'relative' in 'relative atomic mass'.		
									? Misconception	
									When discussing the mass of individual isotopes, 'mass' or 'mass number' should be used. The relative atomic mass is the weighted average mass of all of the isotopes of an element, and is consequently the incorrect term to use in this context.	
										THREE responses for each mark Easiest to check element first
			mentnumberFe54	tons 26	trons 28	trons 26	0 Charge	\checkmark		ALLOW Se ²⁻
	b		Se 80	34	46	36	-2	\checkmark	2 AO1.2×2	
										Examiner's Comments
			Mark by row				Candidates answered this question reasonably well but many selected incorrect elements despite having identified the correct mass number and numbers of protons, neutrons and electrons. A common error was a mass number of 55.8 for Fe,			

				clearly a confusion between the mass number of an isotope and relative atomic mass (see also comments for 21(a)). Mn was also a common error for the first element, presumably by matching the mass number of 54 with the relative atomic mass of Mn (54.9).
		Total	3	
3	i	ProtonsNeutronsElectrons29Si141614√	1	Examiner's Comments This question was an easy starter to the paper with most candidates producing the correct answer.
	ii	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 28.11 (to 2 DP) award 2 marks $(28 \times 92.23) + (29 \times 4.68) + (30 \times 3.09)$ 100 OR 28.1086 OR 28.109 \checkmark = 28.11 (to 2 DP) \checkmark	2	For 1 mark: ALLOW ECF → to 2 DP if: • %s used with wrong isotopes ONCE OR • transposed decimal places for ONE % Examiner's Comments Almost all candidates followed a well-learnt procedure to complete the calculation. Despite being in the rubric to the question, some candidates did not give an answer to two decimal places. Others made a rounding error in reducing 28.1086 to two decimal places, with 28.10 and 28.12 being common errors.
		Total	3	
4	i	m/zprotonsneutronselectrons241212112512131126121411	2	

			Mark vertically: protons AND neutrons √ electrons √		Examiner's Comments This straightforward question was generally well answered. Some candidates completed the table for atoms rather than 1+ ions, with 12, rather than 11 electrons.
		ï	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 24.32 award 2 marks $(24 \times 78.99) + (25 \times 10.00) + (26 \times 11.01)$ 100 OR 24.320 OR 24.3202 \checkmark = 24.32 (to 2 DP) \checkmark	2	 ALLOW ECF for a correct calculation to 2 DP if: %s have been used with wrong isotopes ONCE OR decimal places for ONE % have been transposed Examiner's Comments This stock calculation proved to be one of the easiest questions on the paper. When an error was seen, it was inevitably for not
			Total	4	showing the answer to two decimal places.
5	а		Similarities: (Same) number of protons AND electrons √ Differences: (Different) number of neutrons √	2	ALLOW same electron configuration ALLOW 'amount' for 'number' IGNORE different masses/mass numbers (<i>Question asks for atomic structures</i>) Examiner's Comments Most candidates identified that different isotopes had the same number of protons but then omitted electrons. The different number of neutrons was usually seen although sometimes atomic mass was shown instead.
	b	i	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 63.62 award 2 marks	2	

	<u>(63 × 69.17) + (65 × 30.83)</u> 100		
	OR 63.6166 OR 63.617 ✓ = 63.62 (to 2 DP) ✓ IGNORE any units with A _r		ALLOW ECF for a correct calculation to 2 DP if: • %s have been used with wrong isotopes i.e. $\frac{(63 \times 30.83) + (65 \times 69.17)}{100} \rightarrow 64.38$
			 OR decimal places for ONE % have been transposed,
			i.e. 69.71 → 63.96 ; 30.38 → 63.32
			Examiner's Comments
			This part was mostly correct. Low-scoring candidates sometimes produced errors in averaging or rounding. Most final answers were given to the required two decimal places.
			Answer = 63.62
			If there is an alternative answer, check to see if there is any ECF credit possible
	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 3.97×10^{22} (from 63.62) award 2 marks If answer = 3.98×10^{22} (from 63.5) award 2 marks		SEE answer from 21b(i) at bottom of answer zone
	Using 63.62: correct Ar of Cu from 21(b)(i) See bottom of answer zone $n(Cu) = \frac{5.00 \times 0.840}{63.62} = \frac{4.2}{63.62} = 0.066(0) \text{ (mol) }\checkmark$		ALLOW correct answer from 3 SF up to
ii	Cu atoms = $0.0660 \times 6.02 \times 10^{23}$ = 3.97 × 23 10 ²² \checkmark Must be calculated in standard form AND to 3 SF OR Using 63.5: A _r of Cu from periodic table	2	ALLOW incorrect $n(Cu) \times 6.02 \times 10^{23}$ correctly calculated to 3 SF AND in standard form For ECF, A_r must have been used for n(Cu)
	$n(\text{Cu}) = \frac{5.00 \times 0.840}{63.5} = \frac{4.2}{63.5} = 0.0661 \text{ (mol)} \checkmark$		
	Cu atoms = $0.0661 \times 6.02 \times 10^{23}$ = 3.98 × 10 ²² \checkmark <i>Must be calculated in standard form</i> AND <i>to 3</i> SF		ALLOW correct answer from 3 SF up to calculator value of 0.06614173228
			ALLOW incorrect $n(Cu) \times 6.02 \times 10^{23}$ correctly calculated to 3 SF AND in

				standard form <i>For ECF, A_r must have been used for n(Cu)</i>
				Common errors Using 63.62:
				3.984 × 10 ²² 1 mark (SF)
				4.73 × 10 ²² 1 mark (ECF: omitting 0.840)
				Using 63.5:
				3.982 × 10 ²² 1 mark (SF)
				4.74 × 10 ²² 1 mark (ECF: omitting 0.840)
				Examiner's Comments
				This part was generally well answered with most candidates processing the data correctly. Candidates sometimes failed to consider 84% or rounded incorrectly in places.
				Answer = 3.97 × 10 ²² atoms
		Total	6	
				ALLOW 'average' for 'mean' ALLOW 'mean mass of isotopes' but DO NOT ALLOW 'mean mass of isotope' (singular) DO NOT ALLOW 'mean mass of an element'
		M1 The (weighted) mean mass of an atom (of an		
6		element) √	2	For M2 and M3 ALLOW compared with the mass of carbon- 12 which is 12
6	I	M2 Compared with 1/12th (the mass) √	3	ALLOW for three marks
				Mass of one mole of atoms Compared to 1/12 th
		M2		(mass of) one mole OR 12 g of carbon-12
		Of (one atom of) carbon-12 √		ALLOW for three marks <u>Mass of one mole of atoms</u> 1/12 th (mass of) one mole OR 12 g of carbon-12
				Examiner's Comments
				This commonly asked for definition was well answered by all.

2.1.1 Atomic Structure and Isotopes

	i	First check If answer = (64 x 49.0) + i OR 31.36(0) + OR 65.439 √ = 65.44 √	the answer lin 65.44 award 2 <u>+ (66 x 27.9) + (6</u> 100 18.414 + 2.881	e. 2 marks. 67 x 4.3) + (68 + 12.784	<u>3 x 18.8)</u>	2	ALLOW one mark for ECF from transcription error in the first sum provided the final answer is to two decimal places and is between 64 and 68 and is a correct calculation of the transcription Examiner's Comments The vast majority were able to calculate the relative atomic mass of zinc to two decimal places.
		Total				5	
7		particle proton neutron electron Relative ma	relative mass 1 1 1/2000 ass column √; arge AND posi	relative charge + 1 nil/0 -1	position within the atom nucleus nucleus shell	2	For relative masses ALLOW 1/1800 to 1/2000 for electron value (0.0005–0.00056) ALLOW 'negligible' for electron value IGNORE '+' in front of correct values DO NOT ALLOW '-' in front of 1/2000 DO NOT ALLOW '-' in front of 1/2000 DO NOT ALLOW 'nil' OR 'zero' for mass of electron For relative charges ALLOW 1+ and 'neutral' and 1– IGNORE '-' (ie a dash) for neutron DO NOT ALLOW '+' or '-' without '1' DO NOT ALLOW '1' without charge For position within the atom IGNORE 'middle OR 'centre' for 'nucleus' Examiner's Comments This was well-answered but it was evident that this basic material, usually covered very early in the syllabus had been
							forgotten by a few.
		Total				2	
8		55% √				1	Examiner's Comments Although some very good algebraic attempts were seen in this variant of an A _r calculation, it was clear from the working shown that even when the right answer was given, some candidates had not got to this answer in a systematic way but often in a very muddled and confused manner.
		Total				1	

9			Particle Protons Neutrons Electrons One mark per colu	Relative charge +1 Nil (or 0) −1 umn ✓	Number of particles present in a ¹⁴⁰ Ce ²⁺ ion. 58 82 56 ✓	2	DO NOT ALLOW '+' or '-' without '1' DO NOT ALLOW 1 without charge ALLOW 1+ AND 1– IGNORE '-' (ie a dash) for relative charge of a neutron Examiner's Comments Virtually every candidate made a good start to the paper by securing at least one mark of the two available. Less able candidates gave the mass of the sub-atomic particles rather than their charge and a few gave 140 as the number of neutrons but such errors were a minority.
			Total			2	
10	а	i	Atom(s) of an elect AND with different num masses) √	ment bers of neutrons (a	and with different	1	ALLOW for 'atoms of an element': Atoms of the same element OR Atoms with the same number of protons OR Atoms with the same atomic number IGNORE different relative atomic masses IGNORE different mass number IGNORE same number of electrons DO NOT ALLOW different number of electrons DO NOT ALLOW 'atoms of elements' for 'atoms of an element' DO NOT ALLOW 'an element with different numbers of neutrons) (ie atom(s) is essential) Examiner's Comments This question was well answered. The one common error made was to omit any reference to 'atoms' and so answers in terms of the same element having different number of neutrons received no credit. Candidates should be advised to avoid unnecessary references to isotopes having the same number of electrons.
		ii	same number of e OR same electron cor	electrons in outer s	shell ctron structure ✔	1	IGNORE same number of protons IGNORE same number of electrons IGNORE they are the same element Examiner's Comments The key reason why isotopes show similar

				chemical properties (ie because they have an identical numbers of electrons in the outer shell) was not always understood. Weaker candidates struggled and gave answers referring to the number of protons remaining the same. Even slightly improved answers referring to the total number of electrons remaining the same did not deliver the required level of detail.
	iii	51p 70n 51e ✔	1	Examiner's Comments This straightforward question saw virtually every candidate secure this mark.
b	i	The (weighted) mean mass of an atom (of an element) OR The (weighted) average mass of an atom (of an element) ✓ compared with 1 / 12th (the mass) ✓ of (one atom of) carbon-12 ✓	3	ALLOW average atomic mass DO NOT ALLOW mean mass of an element ALLOW mean mass of isotopes OR average mass of isotopes DO NOT ALLOW the singular 'isotope' For second AND third marking points ALLOW compared with (the mass of) carbon-12 which is 12 For three marks; ALLOW mass of one mole of atoms compared to 1 / 12th (mass of) one mole OR 12g of carbon OR ALLOW <u>mass of one mole OR 12g of carbon</u> OR ALLOW <u>mass of one mole OR 12g of carbon-12</u> Examiner's Comments This familiar recall question was well answered by all candidates. In the past there have been problems with weaker candidates omitting reference to average or mean mass, or muddling comparisons by referring to a single atom of the element and then a mole of carbon-12. On this occasion, however, such errors were rare and the answers seen were extremely strong.
	ii	123 √	1	ALLOW ¹²³ Sb OR Sb-123 OR antimony- 123 ALLOW 123.0 IGNORE working Examiner's Comments This question analysed the methodology of determining relative atomic mass in a more

					unusual way compared to the normal calculation from data about the constituent isotopes. As a result those candidates who had simply committed a method to memory without real understanding of what they were doing found themselves somewhat exposed here and consequently this question proved to be challenging for many. Stronger candidates scored well, however.
			Total	7	
11		i	$\frac{(85.00 \times 72.17) + (87.00 \times 27.83)}{2}$ (1) = 85.56 (to 2 d.p.) (1)	2	
		ii	Rubidium OR Rb	1	
			Total	3	
12	а		63 p 90 n 60 e	1	
	b		2 (1) 2 (1) 18 (1)	3	
			Total	4	